INTEGRATION OF SUPERCONDUCTING MAGNETIC ENERGY STORAGE (**SMES**) SYSTEMS OPTIMIZED WITH SECOND-GENERATION, HIGH-TEMPERATURE SUPERCONDUCTING (**2G-HTS**) TECHNOLOGY WITH A MAJOR FOSSIL-FUELED ASSET

AWARD: DE-SC002489

Prime: American Maglev Technology

of Florida Inc.

PI: Tony J. Morris

Sub: University of Houston

UNIVERSITY of HOUSTON

TEXAS CENTER FOR SUPERCONDUCTIVITY

Location: Houston, TX

DOE: \$199,912 Non-DOE: \$ 0

Total: \$199.912

OBJECTIVES

- Design next-generation, modular Superconducting Magnetic Energy Storage (**SMES**) using 2G-HTS tapes optimized by University of Houston that is scalable to 500 MWh.
- Collaborate with industry partner (**NRG Energy**) to define compatibility, interconnection schematics and cost-effectiveness for integration with a fossil-fueled asset

RELEVANCE & OUTCOMES/IMPACT

- Lower-cost SMES technology could extend the lives of fossil assets as a "hybrid" energy storage solution.
- Co-location with a fossil asset could improve asset utilization, grid reliability & environmental footprint.

Est. \$100/kWh capital cost would compete with lithium-ion in scaled solutions.

1

INTEGRATION OF SUPERCONDUCTING MAGNETIC ENERGY STORAGE (**SMES**) SYSTEMS OPTIMIZED WITH SECOND-GENERATION, HIGH-TEMPERATURE SUPERCONDUCTING (**2G-HTS**) TECHNOLOGY WITH A MAJOR FOSSIL-FUELED ASSET

AWARD: DE-SC002489

INDUSTRY PARTNER

- Fortune 500 national utility
- Interest focused on:
 - < 500 MWh installation
 - 100 MW delivery
 - 5 hours
 - Merchant power provider
 - Leverage "negative pricing"

"Cost-effective, grid-scale energy storage is the problem of our generation."

Grid-scale SMES:

- has no moving parts;
- requires no conversion (no losses);
- creates no environmental hazards; and
- enables historically low costs

- < \$100 / kWh capex
- < 2¢ / kWh storage & delivery

UNIVERSITY of **HOUSTON**

TEXAS CENTER FOR SUPERCONDUCTIVITY

Phase I Development:

- 2G-HTS tape licensed from University of Houston with 10X improvement in currentcarrying capacity)
- Low-cost cryocooling
- Robust power electronics

INTEGRATION OF SUPERCONDUCTING MAGNETIC ENERGY STORAGE (**SMES**) SYSTEMS OPTIMIZED WITH SECOND-GENERATION, HIGH-TEMPERATURE SUPERCONDUCTING (**2G-HTS**) TECHNOLOGY WITH A MAJOR FOSSIL-FUELED ASSET

AWARD: DE-SC002489

Phase II Demonstration:

1 MWh on UH campus

- De-risk technology
- Confirm scalability
- Validate grid interconnection

Hybrid SMES can be an important tool in NETL's toolbox.

- Harness intermittent nature of renewable energy.
- Avoid high cost of continually powering up natural gas peaker plants.
- Create "right-sized," **more efficient** coal plant infrastructure with higher mix of peak-power sales.
- Create green, high-tech jobs for the United States.
- Provide leadership in making sense of changing energy landscape.
- Promote hybrid, "all-of-the-above" strategy with **smart investments** in coal coupled with **grid-scale SMES** technology.

Phase III Deployment:

- NRG Energy candidate sites in metro Houston by 2025
- California has 80-GWh grid-scale storage need

INTEGRATION OF SUPERCONDUCTING MAGNETIC ENERGY STORAGE (**SMES**) SYSTEMS
OPTIMIZED WITH SECOND-GENERATION, HIGH-TEMPERATURE SUPERCONDUCTING (**2G-HTS**)
TECHNOLOGY WITH A MAJOR FOSSIL-FUELED ASSET

<u>AWARD</u>: DE-SC002489

CONTACT

Tony Morris

Principal Investigator +1 404 386 4036 tmorris@american-maglev.com

Jordan Morris

Administrative POC +1 478 454 7075 jmorris@american-maglev.com

